AR1795 Robotics Vision System

Robotics Vision System

Project Number - AR1795
Abstract

The Robotics Vision System (Figure 1) is designed with on the Philips LPC2138 microcontroller and the HAMAMATSU CMOS linear image sensor S9226. The microcontroller is programmed with software that implements a very efficient algorithm for detection of a line position in the camera’s object plane and converts the line position in analog voltage. The vision system can be used in many robotics applications where position detection is necessary. That includes line following toys and industrial robots. The system is also perfect for distance measuring by the triangulation method.

[image: image1.jpg][image: image2.jpg]
Figure 1. Robotics Vision System

Motivation

The development of more advanced robots is impossible without fast, reliable and cost-effective image sensors [1]. During recent years participation in robot races has become very popular [2-7]. Such events inspire students to study science. Unfortunately, they have a very limited choice of sensors. There is no low cost, or processor power efficient image sensor that is suitable to be installed, for example, on a Lego robot.

The goal of this robot is develop a small, cost efficient vision system on the Philips LPC2138 microcontroller to be used on Robofest and other robot competitions.

Block Diagram

The internal structure of the system is very simple. It consists of LPC-H2138 header board for the Philips LPC2138 microcontroller from Olimex Ltd (www.olimex.com), HAMAMATSU CMOS linear image sensor S9226 (http://www.hamamatsu.com/) and the objective lens.

[image: image3.wmf]S9226

V

LPC2138

+9V

Figure 2. Block diagram

Operation Principles

The objective lens builds an image of the line L on the image sensor. The sensor detects the image of the line and converts it in an electrical signal. The 10-bit ADC converter of the microcontroller samples the electrical signal. The array of the samples is filtered in software. The line position in the camera’s object plane is detected and converts in an analog voltage V in the range from 0 to 3.3V. The voltage is directly proportional on the line position. When the line on the optical axes of the vision system, the voltage is in the middle of the range. When the line is shifted to the right, the voltage drops below 1.65V. When the line is shifted to the left, the voltage raises above 1.65V. When there is no line in the camera’s object plane, the voltage stays at 3.3V.

[image: image4.jpg]
Figure 3. Operation principles

Schematic

The schematic of the Robotics Vision System is shown in Figure 4. The powerful set of peripherals of the LPC2138 and microcontroller-oriented interface of the image sensor allows glueless integration of the system. The control inputs of the sensor connected directly to the capture inputs and the match output of the microcontroller timers. The timing chart of the system is shown on the Figure 5
[image: image5.bmp]
[image: image6.png]
Figure 4. The schematic of the Robotics Vision System

[image: image7.png]
Figure 5. Timing chart for the image sensor S9226

Software Design

Software for the Robotics Vision System was designed using Unified Modeling Language (UML). The structure and behavior of the Robotics Vision System is depicted on the class diagram (Figure 6) and the initialization sequence diagram (Figure 7) and the image capture sequence diagram (Figure 8).

Software Implementation

The Robotics Vision System software was implemented in C++ using a GNU compiler and CrossStudio from Rowley Associates Ltd. The source code and workspace is included in the contest entry submission.

References

1. DARPA Grand Challenge. http://www.darpa.mil/grandchallenge
2. Robofest 2006. http://www.robofest.net/
3. Asmo Soinio. A Lego-robot with camera controlled by Matlab. http://www.abo.fi/fak/ktf/rt/robot/index.php

4. Line Following Race. http://www.robothon.org/robothon/line.php
5. David Cook. Jet, a robot that follows lines at over 1 meter per second. http://www.robotroom.com/Jet.html
6. Steve Hassenplug, http://www.teamhassenplug.org/

7. FINALE: Fast Vision-Guided Mobile Robot Navigation using Model-Driven Reasoning and Prediction of Uncertainty. http://rvl.www.ecn.purdue.edu/RVL/Projects/Finale/

[image: image8.wmf]+CCamera()

+GetImageSize()

+GetIntegrationTime()

+GetState()

+IsReady()

+Read()

+Reset()

+SetIntgrationTime(in a_wTime : unsigned short)

+EState)()

+Start()

+Write(in a_wPixel : unsigned short)

-m_wIntegrationTime

-s_eState

+s_vbyPixels

+s_wPixelCounter

CCamera

+CFilter(in a_wPeriod : unsigned short, in a_wThreshold : unsigned short)

+CFilter()

+Calculate(in a_pbyImage : unsigned charconst *, in a_wSize : unsigned short)

-m_wPeriod

-m_wThreshold

CFilter

+Init() : void

HAL::

CTimer

1

-timer

2

+Init() : void

HAL::

CADC

main

1

-video

1

+Set(in a_wVoltage : unsigned short) : void

HAL::

CDAC

Figure 6. Robotics Vision System Class Diagram

[image: image9.wmf]main

Camera

Filter

timer0

timer1

ADC0

DAC

CCamera()

Init()

Init()

Init()

CFilter()

Figure 7. Initialization of the Robotics Vision System

[image: image10.wmf]main

Camera

Filter

DAC

Start()

Calculate(a_pbyImage, a_wSize)

wLinePosition

IsReady()

true

Set:=Set(a_wVoltage)

Figure 8. Image capture

�My project was to create a robot that could be controlled from � HYPERLINK "http://www.mathworks.com" �Matlab� and that has a camera. An additional need was that the robot could be controlled from a PC running Windows 2000. The robot is following a line

1/7

_1191571777

_1191576764.vsd
�

�

�

Sequence�

main�

Camera�

Filter�

timer0�

timer1�

ADC0�

DAC�

CCamera()�

Init()�

�

Init()�

�

Init()�

�

�

CFilter()�

�

_1191577522.vsd
�

�

�

�

�

+CCamera()
+GetImageSize()
+GetIntegrationTime()
+GetState()
+IsReady()
+Read()
+Reset()
+SetIntgrationTime(in a_wTime : unsigned short)
+EState)()
+Start()
+Write(in a_wPixel : unsigned short)�

-m_wIntegrationTime
-s_eState
+s_vbyPixels
+s_wPixelCounter�

CCamera�

�

Static Structure�

+CFilter(in a_wPeriod : unsigned short, in a_wThreshold : unsigned short)
+CFilter()
+Calculate(in a_pbyImage : unsigned charconst *, in a_wSize : unsigned short)�

-m_wPeriod
-m_wThreshold�

CFilter�

�

+Init() : void�

�

HAL::CTimer�

�

�

�

1�

-timer�

2�

+Init() : void�

�

HAL::CADC�

�

�

�

main�

�

�

�

�

�

1�

-video�

1�

+Set(in a_wVoltage : unsigned short) : void�

�

HAL::CDAC�

�

�

_1191577485.vsd
�

�

�

Sequence�

Sequence�

main�

Camera�

Filter�

IsReady()�

true�

Set:=Set(a_wVoltage)�

�

DAC�

Start()�

�

Calculate(a_pbyImage, a_wSize)�

wLinePosition�

_1191572257

_1191429193.vsd
text�

�

�

text�

+9V�

LPC2138�

�

S9226�

V�

�

