Project Number AR1762

TAM-TAM
The Active Mansion Telephone Answering Machine

1. Introduction
The last Telephone Answering Machine that was brought into our household was bought in 2000, technically a few months before the end of the 20th century. While it looked nice on the shelves of the appliance store and was carrying a brand name that insured us of the quality of the products, we found many problems as soon as the machine was put into service at our home:
· The machine uses a quite aggressive voice compression algorithm to reduce the size of the voice memory. This compression has a very nasty effect on the quality of the recorded voice that seems to particularly affect numbers, more so when someone tries to leave a callback number. We end up not being able to call back people who don’t leave their number 2 or 3 times.
· The machine has a very cumbersome user interface. It uses voice prompt. The problem is that these voice prompts use the same compression algorithm mentioned above and this makes the configuration process very tedious.

· The configuration is only kept if the answering machine is fitted with a fresh 9V battery. The configuration was lost a few times before we realized we needed a battery. After we added the battery, nothing indicated to us that the battery was bad and we lost the whole configuration another couple of times.
· Messages can be checked remotely but once again, the horrible voice prompts are used. If poorly recorded messages are played over an international or cellular link, they just become noise. The interface (based on DTMF digits) is poor and slow since the machine spells out all the possible options at every prompt.
· Finally, the capacity of the machine is very limited. This forces us to attempt to check our messages quite often when we are traveling.
TAM-TAM addresses all these objections, sometimes with novel ideas. For example, TAM-TAM does not attempt to replace a poorly designed user interface with a better user interface. It just avoids the issue by using a personal computer that offers a clear display, a keyboard and text editing software. This brings the user to a familiar environment and facilitates the configuration process.
The following picture shows TAM-TAM next to the wireless hub that gives internet access in the kitchen:

[image: image21.jpg]
Figure 1: TAM-TAM with its wireless bridge

The picture shows the 4 LED’s and the 4 push buttons (the big green circles). The Ethernet and phone line connectors are located on the back panel. Note the flash card sticking out from the front panel.
2. Functionality

TAM-TAM has four main modes of operation:

· The idle mode where TAM-TAM waits for a phone call

· The smart answering machine mode

· The local message retrieval mode

· The Internet message retrieval mode

In idle mode, TAM-TAM waits for a phone call. The ring detection routine is sophisticated enough to reject too short rings and rings with the wrong frequency. All these parameters are extracted from the core software and “Magic Numbers” are avoided throughout the software. The “Magic Number” is the name given to the practice which consists of using hard coded values that only the original coder can understand. A better practice is to have #define at the top of the file or in a header file and to give them a self-explanatory meaning. For example, the ring detection routine uses the following statements:
#define MINRINGFREQUENCY 15

#define MAXRINGFREQUENCY 25
This implies that only ring bursts between 15 and 25 Hz will be detected (20 Hz is the nominal frequency in the USA). If you were still using a rotary phone, this setting would correctly get rid of the 10 Hz pulses created by the rotary dial.

Once the first ring burst is detected, TAM-TAM enters the smart answering machine mode. The first action is to activate the Caller ID detection routine. As explained later, the caller ID detection is completely handled in interrupt. The background task just waits for the detection to be completed. A time-out allows the operation to be aborted if the detection is missed or if the checksum is wrong. The next step is to go off hook after the preprogrammed number of rings. Another key (but sometimes mishandled) step is to correctly count the rings: a ring on Monday followed by a ring on Tuesday is not to be counted as 2 rings! The ring count timer is reset after 10 seconds – sorry after the INTERRINGTIMER expires!
After going off hook, the machine plays the first wave file that should invite the caller to send a DTMF key to direct the message to the correct virtual answering machine. The message can be:

“Hi, this is the Smith family; please press 1 for Jim, 2 for Julie, 3 for the kids or 0 for a general message”

If no DTMF digit is detected, a generic message is played after a programmable timeout. Otherwise a more specific message can be played. In our example, if 2 is detected, Julie’s voice could be heard saying:

“Hi, this Julie I am currently visiting my mother please leave me a message”.

The general messages or the ones recorded after a digit timeout are stored in the mailbox “0”. The messages are recorded until one of the following events happens:

· The maximum message duration, which is programmable, is reached. In that case a short tone informs the caller that TAM-TAM is about to hang-up.
· Some one picks up the local handset. In that case, the message is aborted.

· A remote hang-up is detected. This detection is done when a short interruption of the line current is detected or when a dial tone is detected.

A flow diagram of the smart answering machine is shown on Figure 2 together with the DSP functions that are required.

[image: image2.jpg]
Figure 2: TAM-TAM Answering Machine Flow

After a message is recorded, the user is notified with an email message (see later) and the green led assigned to that user (0, 1, 2 or 3) blinks slowly. This indicates that at least one message is pending and it/they can be heard with the local retrieval procedure. Because the front panel is very simple, there is no confusion on the procedure to be used. By just pressing the button assigned to the user, the messages are played one after the other. After a message is played, a very short tone is played. There is a 3 second window during which, if a key is pressed for about one second, the most recently played message is erased from the user’s queue.

The more interesting procedure is the internet retrieval procedure. By just typing the IP address of the home network on which TAM-TAM is connected, the user can retrieve his messages. A screen identical to the one shown on Figure 7 on Page 23 is displayed.
There is no attempt to protect users from each other since this protection does not exist at home. On the other hand, the addition of a password on the initial page would be required in a production version of the current prototype. This retrieval procedure has an inherent problem because ISP’s don’t want users without a professional account to run web servers on their network. This is why ISP’s also often rotate the IP address assigned to such networks and block incoming connection to port 80. TAM-TAM was designed with the web server running on port 8000 to bypass this restriction. In addition, I subscribed to a service that allows me to name my web server and access it on its own port for free. TAM-TAM own web server running on port 8000 can now be accessed from anywhere in the world by typing: tamtam.hostredirect.com (hostredirect.com is just an example). The IP address is maintained current in the DNS servers thanks to a small utility running on my PC. The company that offers this service details how this utility can be implemented on another platform so it could theoretically be ported to TAM-TAM.
This quick overview allows us to build a laundry list of software features that are required to implement TAM-TAM:

· MMC/SD flash card interfacing

· PC-compatible File System

· Wave file play and record

· Tone detection and generation

· DTMF detection

· Caller ID demodulation

· TCP/IP stack

· Web server
3. Block Diagram

[image: image1.jpg]
Figure 16 on page 34 shows a complete block diagram of TAM-TAM. The diagram is also reproduced here in a smaller format. The heart of the machine is the ARM-based LPC213x. The microprocessor shares its SPI bus with the SD/MMC card reader and the Ethernet MAC/PHY chip. Individual chip select lines direct the transfers to the correct device.
The signal from the DAA is split by a 4-wire / 2-wire converter. The ADC line from the microprocessor is used for recording from the telephone line. The DAC is shared between the telephone line (playback of message to the caller) and the audio amplifier (local playback of recorded messages). Two analog switches direct answering machine prompts to the phone line, and local playback to the speaker. Not shown on the block diagram is the power supply that turns the +5V input into the +3.3V needed by the different IC’s. The +5V itself is used for the audio amplifier to reduce the strain on the regulator and increase the available audio power.
4. User Interface

There are many books, schools, design centers, user focus groups all interested in improving the look and feel of products ranging from the simple coffee machine you use every morning to the complex flight deck of a jetliner. The look itself is subject to the fashion trends but what is watched for even more carefully is the usability of the product. Everybody knows the VCR programming fiasco that has now become a case study and an over exploited target for stand-up comedians. Well, as the usability improves, we are also asking more and more from our products. You would not think that your fridge needs to know your Email address but the time will come when it will need it. How will you enter it when the day comes? I got tired of entering long text strings by scrolling through about 100 characters with up and down keys (2 alphabets, upper and lower case, 10 numbers and punctuation signs). The editing capability of these machines is generally poor and there are many cases where a single error requires retyping (or rather re-scrolling) the whole string.
TAM-TAM avoids this trap by removing all the configuration buttons and display from the product. Think about it: you generally configure such a product only once. For example, the answering machine manufacturer has to deal with a microphone and its associated circuitry and, most likely, this hardware will only be used once or twice in the lifetime of the product. In contrast, the entire configuration for TAM-TAM is handled on a PC by editing and saving a simple text file.
The configuration file must be called “tam.txt” and must be, like all the other files, stored in the root directory. The example below shows the first few lines of the file:

;--

; RingToAnswer Number of rings before going offhook

; Example: 2 rings

RingToAnswer: 2

;--

; MaxUser Total number of users not including not including the

; "catch all" user

MaxUser: 3

;--

; DTMFTimeOut Time in 100ms units to wait for a User prompt

; Example: 4 seconds

DTMFTimeOut: 40

;--

; RecordTimeOut Maximum record time in 1 second units
; Example: 3 minutes

RecordTimeOut: 180

;--

; GreetingFileName Name of wav file played after the machine goes

; offhook

; Example: "This is the Smith family, press 1 for Jim,

; 2 for Julie, 3 for the kids or 0 for a

; general message"

GreetingFileName: hello.wav
A full configuration file is given in Annex 1 on page 29. The parser follows the following simple rules:

· Variables names must start on column 1
· Lines starting with a semicolon (“;”) are ignored and can be used as comments

· The assignment is done with a colon (“:”). The parser automatically differentiate between strings (for example: hello.wav) which are saved unchanged and numbers that are converted into an unsigned 16-bit integer.

As mentioned earlier, any text editor can be used to modify the sample file. The parser is also flexible on the type of line termination that is being used. Optionally, a simple front end could be developed in Visual Basic. This front end would take care of creating the “tam.txt” text file, creating the wave files and verifying that all the files referenced in the configuration file do exist in the root directory of the flash card.

The other aspect of the configuration process is the creation of the wave files. The wave files that are needed by the answering machine, like the greeting message, are also recorded on a PC. The simplest recording application on a Windows machine is the Sound Recorder. The Sound Recorder has a limited number of default profiles and the one used by TAM-TAM is one of them! Standard rates range from 8 to 44.1 kHz and the format includes 8-bit, 16 bits with 1 or 2 channels. Because the goal is to play and record files on a telephone line, there is no value in using a rate higher than 8 kHz. The phone lines are limited to frequencies below 4 kHz and the phone companies themselves carry voice at 8000 samples/second. The phone company uses a non-linear coding which roughly provides the same SNR as a 13-bit linear coding would. Finally we don’t play stereo on phone lines so mono is good enough. So the configuration that was selected is: 8 kHz, with 16 bits and one channel. Sound Recorder shows this as:
8.000 kHz, 16 bit, mono 15 kb/sec
You would think that someone at Microsoft would realize that 16 bits are equal to 2 bytes and if you are sending 2 bytes, 8000 times per second then your recording rate is 16 kilobytes per second and not 15! Nevertheless, despite this small glitch there is no need to worry. The format is really what it was meant to be. The rest of the Sound Recorder interface is not perfect either. This is actually a tool that appeared around the Windows 95 days or maybe even earlier. It is easy to miss the configuration and record a file with the wrong format. You can easily check the rate because newer versions of Windows show the sampling rate of a wave file when you put the cursor on its icon. This time, the rate is shown in bits per second and the Microsoft engineer who wrote this routine correctly calculated that 16 bits sent 8000 times per second is equal to 128 kbps rate. If it happens that you recorded a wave file with the wrong format you can do it again or convert the existing file to the right format.
More complex editing of the files can be done with more sophisticated tools. Adding music is a popular option and doing it digitally is a better option than playing an old tape on a boom box near the microphone of your 20th century answering machine! The key is to make sure that the wave files are saved with the following parameters: 8 kHz, 16 bits, mono.
5. The wave file format

TAM-TAM has the capability to play and record wave files in the same format as a PC. Tracking the “.wav” file format was another interesting project as conflicting information can be found on the Internet. My first attempt to record and then interpret the content of a wave file on a Windows machine failed. There were differences between the format found on the Internet and the actual data from a hex dump of a wave file recorded on a Windows XP Home machine. This problem is certainly caused by the fact that Microsoft has, over the years, improved or added parameters to the older format. The good news is that once the philosophy of the format is understood, it becomes easier to really interpret the data instead of relying on a given piece of information at a given location. The format that is interpreted (in playback mode) might, in some cases, be slightly different from the format that is being generated (record mode). This does not affect the fact that both types of files are valid “.wav files” and can be played and recorded on TAM-TAM or on a PC.
The wave file format is a hierarchy that starts with the 4 letters “RIFF”. This hierarchy can be navigated since each level announces its name and the length of the data that follows. When a name is not understood or expected, it can be just skipped. The format that is implemented is the following:

· “RIFF”

4 bytes
Level 1

· TotalSize

4 bytes
From “WAVE” to end of file
· “WAVE”

4 bytes
Level 2
· “fmt “

4 bytes
Level 2 tag
· sizeOFfmt
4 bytes
16 or more (see text)
· 0x0001

2 bytes
indicates PCM

· 0x0001

2 bytes
1 channel - mono
· 8000

4 bytes
sampling rate

· 2000

4 bytes
byte rate (8000 / 8 * 2)

· 2

2 bytes
total number of bytes per
sample * # of channels

· 16

2 bytes
bits per sample per channel

· <more data>
tbd

More data might be present,
SizeOFfmt must be checked

· “fact”

4 bytes
Level 2 tag

· sizeOFfact
4 bytes
(4 or more, see text)
· <some data>
tbd

Ignored and skipped (based
on sizeOFfact value)
· “data”

4 bytes
Level 2 tag
· sizeOfData
4 bytes
Number of bytes = Number of samples * 2
· <samples>
tbd

Size defined by SizeOfData

During playback, the wave files are loosely analyzed. The file interpreter navigates through the file structure to extract the key value which is the number of samples to be played (SizeOfData). This value indicates how many bytes (and not samples) are present in the <samples> section of the file.
There is no attempt by TAM-TAM to fix a wrong sampling rate value by performing quantization or interpolation or to do anything fancy with files that may have been compressed. On the other end, the parser correctly analyzes files that have been created with different versions of the Windows OS or with different programs under the same OS. The “fact” header is rarely documented and seems to be a relatively new occurrence. It does not seem to bring any additional value to a simple PCM stream so it is just ignored as are any other headers that could show up before the “data” header. Files that are created while recording with TAM-TAM do not carry the “fact” header since the description I found would not match the actual content of a PC file. This is not an issue if the other values (mainly TotalSize) are adjusted accordingly. Again the key is to not just write values in a file but rather to understand how they are calculated. Files created by TAM-TAM play flawlessly on all the Windows machines that were tried.
Another example is the “fmt “ (note the extra space) header. Up to 16 bytes of data are generally correctly documented. The combination PC/OS that I used to generate the wave files always adds 2 extra bytes at the end of the “fmt “ block. They can easily be ignored by looking at the sizeOFfmt value and then skipping the corresponding number of bytes. The little documentation that was found about them shows that these extra bytes are only needed for non-PCM format. These extra bytes are not generated during record. The sizeOFfmt value is set to 16 since only 16 bytes are needed to carry all the parameters of a PCM file. The most accurate description of the wave format together with pointers to the actual file specifications was found at: http://www.tsp.ece.mcgill.ca/MMSP/Documents/AudioFormats/WAVE/WAVE.html. The links to the Microsoft documentation no longer work but they could be found with a search engine and the site maintains a copy of some of the documents.
6. The File System

An excellent starting point was an article in the March 2005 edition of Circuit Cellar. The article offers an implementation of the FAT16 on an SD/MMC card. This is a perfect match for TAM-TAM since the goal was to allow files to be exchanged between TAM-TAM and the PC. This implies that the file themselves have to be compatible and for that reason a lot of attention was put on the Wave File Format but this also implies that the file systems must be compatible. This means that both TAM-TAM and the Windows-based PC need to agree on how the files are stored, where the file directory is located, how file names are stored, where is the file size located and much more. The FAT16 is an almost obsolete file system, at least from Microsoft’s point of view, but it is supported in Windows XP.

The Circuit Cellar code
 was initially designed for the AVR family of microcontroller but it was relatively easy to update it for this project. The hardware dependant library was modified to take into account the specifics of the LPC213x SPI interface. The initial implementation on the Keil development boards was successful so files could be read and written relatively quickly.
Nevertheless it became quickly obvious that some features were missing from the code and they had to be added for this project.

The original code does not have an option to read/modify/write files. It offers read only or write only. This is a problem for wave files because some information about the file length is needed at the beginning of the file but this information is only known at the end of the recording. This problem was addressed the following way:

1. The file is opened in write only mode.

2. The header portion of the file is filled with zero up to the point where the recording is supposed to take place.

3. The recording takes place and samples are written to the files.

4. When the end of recording is detected, the existing “flush” function is called. This updates the directory record with the file length.

5. A “rewind” function is called. This is a new routine that was added for TAM-TAM. It basically brings the write pointer back to the beginning of the file.

6. The header information as detailed in paragraph 5 above is written to the file.
7. The “update directory” flag is cleared. This prevents the file size from being updated with a bogus size (the real size of the file plus the size of the header).

8. The file is finally closed

Steps 4, 5 and the beginning of step 6 are shown here below:

/* Update the file size since it won't change */

fat_flush();

/* Find the size of the file */

bytecounter = fatFindFileSizeWrite(hWave);

/* Go back to the start of file to write the headers */

fat_rewindWrite(hWave);

/* RIFF header */

fat_write(hWave, "RIFF", 4)

// Get the size (remove RIFF and that word)

u32Value = bytecounter - 8;
fat_write(hWave, (u08*) &u32Value, sizeof(u32));
/* Wave header */

fat_write(hWave, "WAVE", sizeof(u08) * 4);
/* fmt header */

fat_write(hWave, "fmt ",sizeof(u08) * 4);
etc…

Other functions were added to find the size of the file both in read and write modes. Another function that was added is a routine that deletes existing files. Without the delete function, there is no way to remove an existing file from the file system. Finally, a file rename function was added.
The following strategy is followed to name the message files used in the system: every time a message is received, it is first recorded as “temp.wav”. At the end of the recording, the file is renamed “UxMyy.WAV” where x is the user (0 to 3) and yy is the message number (00-99). In addition, another file with the same name but a “.TXT” extension is created to store the time of the call, calling number and name. After the message files are created, a “messages.htm” file is automatically generated by compiling the pending (not erased) messages. The directory may look like this:
U0M00.WAV

U0MOO.TXT

U2M00.WAV

U2M00.TXT

U2M01.WAV

U2M01.TXT

U3M00.WAV

U3M00.TXT

This indicates that one general message, two messages for User 2 and one message for User 3 are pending. User 1 has none. The “messages.htm” file is displayed with the web interface.
7. The very secretive FSK demodulation
An FSK demodulator was needed to demodulate the caller ID information from the telephone line. Many have shown how a simple edge detector followed by a counter can be used to demodulate FSK even on the tiniest 8-bit microcontroller. These demodulators do perform well when fed with a perfect signal but show limited performance in real (noisy) applications. For example, I could not run such a demodulator on my PSTN+DSL telephone line. For that reason, the design goals for TAM-TAM called for a high performance FSK detector and the simple edge detector method was considered inadequate.

Plug “FSK demodulation” into an Internet search engine and you will find almost nothing once you eliminate all the edge detector systems. Luckily for us, this statement is not entirely true. On a recent search, a good summary paper did show up
. The paper describes a “filter-type” approach to the demodulation of FSK signals. The problem is that real implementations are hard to come by. Actually it seems that some people have put additional effort in hiding the information. A semiconductor company describes, in an application note, an FSK modulator/demodulator and provides the assembly listing. The bad news is that the source code was turned into data statements (.word xxxxh) in the heart of the FSK demodulator in an obvious effort to hide the secret of FSK demodulation. After hand disassembly, the demodulator appeared to be too dependant on the processor architecture and was rejected.
The solution came from the Ham Radio world where a data transmission system called “Packet Radio” uses FSK modulation. A radio link is generally a poor media for data transmission. Noise, distortion and phase shift are common impairments that affect the signal and the receiver must be robust enough to take care of these impairments.
The FSK system used by Ham Radio operators is very similar to the Bell 202 standard used by the Telco’s to carry the Caller ID information. Both use the following parameters:
· Signaling speed: 1200 bauds

· Frequency for a 0: 2200 Hz

· Frequency for a 1: 1200 Hz

The two systems differ in the fact that the Ham radio system uses a phase-coherent, synchronous system while the Bell 202 standard does not requires phase coherency and is asynchronous. In order to verify the implementation and the quality of the FSK demodulator, a prototype of the demodulator was implemented on the Keil evaluation board. A radio scanner was set on the frequency generally used by Ham operators and the speaker output from the scanner was connected to the Analog input of the LPC213x. Using the speaker output is generally not recommended since this path adds the distortion caused by the squelch circuit and the audio amplifier. Nevertheless, the Ham radio packets were correctly received and the FSK demodulator was given a stamp of approval. The synchronous demodulator was then rendered asynchronous by removing the clock recovery routine. This routine checks for data transitions (1 to 0 or 0 to 1) and adjusts the data sampling point accordingly. The transitions should always happen at the mid point between 2 sampling points and if that is not the case, then the sampling point is slowly adjusted. If the transition happens too early, the sampling point is pulled in and vice versa. The adjustment is always small to insure that the system does not overreact to a single error. After a few data transitions, the sampling point is always perfectly adjusted to the middle of a data bit. If there is clock drift between the transmitter and the demodulator, the clock recovery also takes care of it.
In asynchronous mode, the clock only needs to be good enough for the duration of a character. A software UART is required and the character synchronization is achieved with additional start and stop bits. In hunt mode, the UART waits for a 1 (or “Mark”) to 0 (or “Space”) transition. When such a transition is detected, a start bit is assumed and the sampling point is set to ½ of the bit length. Half a bit later, the data is sampled again. If zero is detected, the start bit was valid and the software UART proceeds to sample the next 8 bits of data and one stop bit at a one-bit interval. If a one is detected, the character is aborted and the UART goes back into hunt mode. The stop bit is sampled in the middle of the bit. If a Mark state is detected, the character is considered valid and it is passed to the Caller ID function. If a Space is detected, the UART is assumed to be out of sync. It then goes back into hunt mode waiting for a 1 to 0 (Start) transition.
A practical implementation of the very secretive FSK demodulation using the 2 filters method is revealed in an article
 by Thomas Sailer. This article was mostly written for ham radio operators that use the packet mode of operation but it was easily applied to our application. The article is in German but nowadays you can get an approximate translation from the most popular search engines, Every time a sample is received, it is put into a circular buffer rxsamples[]. When the routine is entered, rxptr points to the oldest sample in the buffer. The secret of the demodulator lies in the following few lines of C code:
for (i=0; i<NPERBAUD; i++)

{

sample = rxsamples[(rxptr+i) % NPERBAUD];

outloi += (sample * coeffloi[i]);

outloq += (sample * coeffloq[i]);

outhii += (sample * coeffhii[i]);

outhiq += (sample * coeffhiq[i]);

}

out = (outhii>>15) * (outhii>>15) + (outhiq>>15) * (outhiq>>15)

 - (outloi>>15) * (outloi>>15) - (outloq>>15) * (outloq>>15);

The coeffloi[] and coeffloq[] tables are initialized with the cosine and sine components of 8 samples at low frequency (1200 Hz) and coeffloi[] and coeffloq[] with the high frequency (2220 Hz). Every time a sample is retrieved from the ADC, the low and high frequency filters are run with the last 8 samples. At the end of the loop, outloi and outloq represent the phase and amplitude of the 1200 Hz component and outhii and outhiq represent the phase and amplitude of the 2200 Hz component. Since we are not interested in the phase information, we can just calculate the total energy in each filter by taking the sum of the squared I and Q components. We then subtract the energy detected in the Low filter from the energy detected in the High filter. If the result is positive, then a high frequency (2200 Hz, bit 0) is assumed. If it is negative a low frequency (1200 Hz, bit 1) is assumed.
A high level block diagram of this process can be seen on Figure 3: FSK Demodulator, below. The response of the 1200 and 2200 Hz filters over the 0 to 3000 Hz range as simulated with Microsoft Excel can be seen in Chapter 11. DSP Programming on Page 16.

[image: image3.jpg]
Figure 3: FSK Demodulator Block Diagram

All the other DSP functions in TAM-TAM are performed at an 8000 Hz sampling rate. If the same sampling rate was used for the FSK demodulation we would have had to sample the bits every 6.66 samples (8000/1200). This means doing it every 7 samples most of the time and every 6 samples some of the time. That is feasible but the whole process is easier if the sampling rate is an integer multiple of the baud rate. For that reason, the caller ID demodulation runs at a 9600 Hz sampling rate which is exactly 8 times 1200 Hz. We could have picked 7200 Hz as well. The FSK initialization routine is show in Annex 2: FSK initialization on page 30. It shows how the filters are initialized with a reference Sine and Cosine wave for each frequency.
To avoid potential problems, the sampling rate is changed the first time an interrupt occurs after the DSP handler was configured for FSK demodulation. This “change of gear” does not interfere with other operations since there is no requirement for other DSP functions while demodulating FSK.

8. Caller ID

Once the FSK demodulation is in place, the extraction of the caller ID information becomes very easy. The information is transmitted between the first and second ring. The caller ID frames carry the day and time, name and phone number of the caller. The day and time are used to automatically set-up a real-time clock as soon a phone call is received.
The telephone number and name of the caller, if available, are associated with the wave file. This information is displayed when TAM-TAM is accessed through a web browser.

9. DTMF demodulation
A DTMF tone actually consists of two tones sent si9multaneously. The first tone is selected from a group of 4 “low frequencies” and the second tone is selected from a group of 4 “high frequencies”. This gives 16 possible configurations. Our DTMF demodulator uses the Goertzel algorithm. This algorithm has been detailed in the columns of Circuit Cellar in the recent past. The difference here is that the algorithm is written in C and does not use a single line of assembly. The implementation of the algorithm itself was borrowed from an older implementation in the Asterisk, Linux-based PBX.
The Goertzel algorithm performs a very simple DFT (Discrete Fourier Transform). The key of the algorithm resides in finding the number of samples that will be required to be accumulated before running the detection loop. We call this parameter DTMF_NPOINTS. There are many parameters affecting the selection of this parameter:

· The larger the value, the longer it will take to perform the detection

· The larger the value, the narrower the frequency detection is

· Finally, the algorithm performs its analysis on discrete frequencies (also called bins) that are located at:

fi = i *(SAMPLINGRATE / DTMF_NPOINTS)

Where i is an integer. For the detection to be optimal, the fi must match the DTMF frequencies as closely as possible otherwise there is “bleeding” of the energy from one bin into another.
Tests and simulations have shown that a value of 205 is the best one at a sampling rate of 8000 Hz (a different value of 115 was recommended in a recent Circuit Cellar article). The 205 value gives a window of samples of 25.6 ms. In order to prevent falsely detecting DTMF tones, the algorithm looks for 2 consecutive positive detections in adjacent windows. This means that the minimum tone duration is 51.2 ms but it can take a little bit longer if the tone was started in the middle of a sampling window. Once the samples are accumulated in the interrupt (see Paragraph 11: DSP Programming), the detection is performed very quickly with the following routine:
/* Process the 8 frequency filters */

for (k = 0; k < NDTMFCOEFF; k++)

{

 /* Goertzel processing */

 sk = sk1 = sk2 = 0;

 for (n = 0; n < DTMF_NPOINTS; n++)

 {

 sk = DTMFsamples[n] + ((DTMFCoeff[k] * sk1) >> 15) - sk2;

 sk2 = sk1;

 sk1 = sk;
 }

 /* Prevent overflows */

 sk >>= 1;

 sk2 >>= 1;

 /* compute |X(k)|**2 */

 power = ((sk * sk) >> AMP_BITS) -

 ((((DTMFCoeff[k] * sk) >> 15) * sk2) >> AMP_BITS) +

 ((sk2 * sk2) >> AMP_BITS);

 result = result >> 1;

 if (power > DTMF_TRESH)

 {

 result += 0x80;

 }
}

The loop calculates the energy in every one of 8 filters (the 4 low plus the 4 high frequencies). At the end of the routine, the variable result has a bit set for each filter that has energy above a preprogrammed threshold. The detection routine finally checks that there is only a single bit set in each nibble representing the low and high frequency groups.

The algorithm that was implemented here is simplified but reliable. The time slice during which TAM-TAM expects a DTMF digit is very small and voice is not expected during that time frame. As a result, some additional features were removed from the algorithm. They could be easily added back because they do not significantly increase the processing time. The only feature that doubles the processing time is an algorithm which checks for energy in the harmonics of the DTMF frequencies. This doubles the number of filters to be analyzed. While this feature is supposed to detect the presence of voice, it actually prevents detection of DTMF issued by phones which themselves generate these harmonics!

While I might not use this exact detector in an Interactive Voice Response system for a banking application, TAM-TAM never missed or falsely detected a DTMF digit during the testing period.
10. Tone detection
Tone detection is one of the methods used to detect that the caller has hung-up the phone. After a while the Central Office sends a dial tone which in the US is the combination of the 2 frequencies: 350 and 440 Hz. In some countries, a cadenced busy tone is sent and that would require a slightly different implementation with cadence detection.
Because the DTMF detection was working so well and because the buffering system was already in place, the same algorithm is being used for tone detection. This time the detection time is increased to about 1 second (40 buffers of 205 samples). This detection has to run concurrently with the wave recording. Because only 2 frequencies have to be detected, the processing is 4 times lighter than what is required for DTMF. Speech can easily trigger one or the other of the 2 filters. It could trigger both but because the detection has to happen without a single miss for 1 second, this event is relatively unlikely.
While recording a wave file, at the end of the interrupt routine that processes the samples, an “ugly” goto instruction send the program flow to the DTMF processing where the samples are gathered in packets of 205. The buffers are then sent to the tone detector by the background processing.

11. DSP Programming
One goal of this project was to experiment with the implementation of DSP features in a generic RISC processor. At the center of the DSP features is the sample interrupt which is actually a timer interrupt. If higher accuracy and low jitter were required, the interrupt should actually come from the ADC itself and the ADC value should be buffered until read by the interrupt routine but this feature is not available on the LPC213x. The same timer interrupt is also used to output samples for voice playback or tone generation.

The DSP functions themselves are often tricky and they are not always easy to debug. Professionals would use tools like Matlab to develop and tune their algorithms. An amateur does not generally have access to such simulation tools so I tried a few different options. On problem with demodulation is that the signal you are trying to catch might be very furtive. It shows and disappears quickly! On the other hand, a simulator allows you to generate millions of these furtive signals and verify that the algorithm works well in presence of noise or any other impairment. The DTMF demodulator was developed and debugged with an old version of Microsoft Visual C/C++. This old version may not allow me to develop modern applications running on Windows XP but it is an excellent tool for developing generic C code. On top of that, it has a step function that can be used to track down nasty bugs. This is a nice feature since I did not have a step function on my LPC213x platform. I am not even sure that current versions of the Windows tools still allow console applications to be developed but any old copy will do. To debug the DTMF detector I did generate some DTMF samples:

for (i=0; i<DTMF_NPOINTS; i++)

{

f1 = sin(2 * PI * i * DTMFLow[low] / SAMPLINGRATE);

f2 = sin(2 * PI * i * DTMFHigh[high] / SAMPLINGRATE);

sum = 256 * (f1 + f2)/2;

DTMFsample1[i]= (s32) sum;

}
I then sent the samples to my demodulation routine. In this example, low and high are parameters which tell the function what frequencies are to be generated. Until I got the demodulation routine to correctly extract the right DTMF tones, I knew I better invest my time on the Windows platform rather than the ARM-based platform. On the other end, after the DTMF detector was debugged on Windows, it worked the first time it was ported to the LPC213x! The Microsoft Visual C/C++ source code is available in the software directory.
Another simulation tool I used is an Excel spreadsheet. For historical reasons, I used such spreadsheet to debug the FSK demodulator. Excel is not as nice of a DSP software development tool but I was able to generate plots of the filter response that would have been more difficult with a console application on Windows. Figure 4 shows the response of the 2 FSK demodulation filters plotted with Microsoft Excel.
[image: image4.emf]0500100015002000250030003500

1200 Hz Filter

2200 Hz Filter

Figure 4: Response of the 2 FSK filters

There are a few fundamental differences between a DSP and a RISC processor and one of them has to do with arithmetic. Generally a DSP will saturate and this is a very good feature if you want to do signal processing. Saturation in the analog domain, while not recommended, generally works by itself
. Digital saturation should also be avoided because it causes distortion in the signal to be analyzed but saturation is still better than no saturation. Let’s take the example of a 16-bit processor working with unsigned numbers. The minimum value that can be represented is 0 (0x0000) and the maximum is 65535 (0xFFFF). Let’s assume that we need to compute: out = 2 * x, x being an input value or an intermediate value in a series of calculations. With a generic processor, as soon as x is greater than 32767, we are in trouble.
For example if x = 33000 (0x80E8), the result will be out = 66000 (0x101D0). Because this value cannot be represented with 16 bits, the processor will truncate the value and tell us that:

out = 2 * 40000 = 464 (0x01D0) from that point on, all the calculations will be off.

On the other end, a DSP (or an arithmetic unit with saturation) will saturate the value to its maximum (or minimum) capability and will tell us that:

out = 2 * 33000 = 65535 (0xFFFF)

There is a big difference because in the first case, out will be assumed to be a very small value, as if x itself was very small while in the DSP case, the value is still incorrect but shows that the input was a large number. Trends in the signal can be tracked with saturation. If the saturation is not too severe, for example affecting only a few samples, the signal might be demodulated correctly.
Because generic RISC processors like the LPC213x do not have a saturation function, it is very important to insure that the input values or the size of the variable are correctly scaled to prevent saturation. This problem was avoided with the simulation process described above.
Finally, another important aspect of modern DSP programming is to decide if sample-based or block-based processing is going to be implemented. In a sample-based scheme, the DSP routines are executed every time a sample is received or need to be transmitted. The first DSP engines were very crude and had limited storage and interrupt capability. The DSP would sometime stay in a loop polling a bit indicating that a sample was ready to be sent or received. In a block processing scheme a “block” of samples is accumulated and the processing is generally performed outside the interrupt routine.

TAM-TAM mostly implements the block processing method. The wave playback is an excellent example as shown on Figure 5 on page 19. The processor first loads the first buffer (wavedata1) with samples to be played, the pointer pWaveSample points to the first sample in the buffer and pWaveEnd points to the last sample in the buffer. The playback process is then started. While the samples are read from the first buffer in the interrupt routine (blue arrows), the second buffer is loaded with additional samples from the flash. There is plenty of time to do so while the samples are played from the first buffer. Once the second buffer is full, the pWaveSampleNext and pWaveEndNext pointers are updated with the start and end addresses of the fresh buffer (green arrows). When the interrupt routine reaches the end of the first buffer (by comparing pWaveSample with pWaveEnd), the pWaveSampleNext pointer is checked. If it is non-zero, the new values are copied in pWaveSample and pWaveEnd (red arrows); the interrupt process continues reading the samples pointed by pWaveSample and the initial buffer is loaded with data from the flash. When the interrupt routine detects that pWaveSampleNext is equal to zero, it means that the background process has finished reading the wave file and the playback is stopped.
[image: image5.jpg]
Figure 5: Ping Pong processing

TAM-TAM uses this type of Ping-Pong block processing for:

· DTMF decoding

· Wave File Playback

· Wave File record

· Tone decoding

The per-sample processing is used for:

· FSK demodulation

· Tone generation

The choice is generally dictated by the amount of processing that is required. The sample interrupt occurs 8000 times per second. Very often the DSP algorithms require a nominal processing for each sample but more processing “once in while”. If the average processing is more than the available real time, then there is nothing that can be done. DTMF processing on the other end takes little processing for each sample (just storing the data into a buffer) but substantially more for every block of 205 samples. This amount of computing would not fit in 125 µs (1/8000) but fits nicely in the background while another set of 205 samples are accumulated.
The key is to insure that no Sine (or any other complex arithmetic function) is ever used on a per sample basis. A single Sine calculation done for each sample takes more computing time than what is allowed by the real time. The average Sine execution time was measured at > 200 µs on the LPC213x platform running at 60 MHz.
12. Ethernet and the TCP/IP stack
This project required a TCP/IP stack and due to lack of time, the first attractive offer was immediately endorsed. I selected the uIP stack
 designed by Adam Dunkels from the Swedish Institute of Computer Science. This choice ended-up to be not necessarily the best one but it provides the desired functionality. The stack is targeted for processors that are generally smaller than the LPC213x and the stack carries some short cuts that would not be necessary with a 32-bit RISC processor.
The major issue with the stack ended up being the development of a suitable driver for the Ethernet chip. The ENC28J60 from Microchip is a very interesting device. The ENC28J60 makes it extremely easy to add Ethernet connectivity to the smallest processor as long as the processor carries a SPI interface. The choice of this interface is very clever because it requires only 4 pins: SPI in, SPI out, clock and chip select.

Microchip provides an example driver that fits nicely with their own TCP/IP stack but our driver had to be developed from scratch because the Microchip driver is only licensed for use with their own processor. Because the chip is relatively new (see 17. Where is Mr. Brown? on page 26), there is no available resource on the net. The positive aspect of this exercise is the fact that the chip performed exactly as documented even though I had been warned that I was given a pre-production sample. One problem that took some time to investigate is a strange compiler issue. The stack is supposed to be ANSI C compliant but my compiler would assess some long if conditions as false even though all the conditions were true. I rewrote some of these long if statements and the problem disappeared.
The longest problem to debug was the fact that I did not configure the SPI adapter in the LPC213x according to what the Ethernet chip would expect. This caused a weird problem because some registers could be read or written correctly but others would not. This problem went away after I configured the SPI bus correctly. Another problem I encountered was the fact that in some cases, the first received frame would be completely wrong. The chip includes a memory manager that indicates where the next frame is to be expected in the memory. Once in a while the pointer associated with the first frame would return a value outside the internal addressing space. The driver detects this error and reset the chip if it occurs. If the first frame is good, I can ping TAM-TAM for days without a single problem.
The ENC28J60 includes 2 LED drivers that are configurable. The default configuration is to have a carrier detect on one and a traffic indicator on the other. These LEDS are on the PCB but are not shown outside the box.

[image: image6.jpg]
Figure 6: Ethernet details
Figure 6: Ethernet details shows the section of the PCB dedicated to the Ethernet chip. The bottom traces are the connection to the processors. Five lines are shown but only 4 are used since the interrupt line has not been activated. The chip itself only requires 2 additional components: a decoupling capacitor for the internal regulator (C21) and a bias resistor (R29). In reality there is also a need for some additional passive components around the transformer. The chip is also very conservative relative to its power supply. The different sections of the chip (oscillator, PLL, PHY…) have each an individual power supply pin that requires its own decoupling cap. Finally, 2 additional resistors are required if the LED’s are implemented.

13. The TCP/IP Applications
The uIP stack comes with a few example application but they had to be modified for TAM-TAM environment:
The SMTP mailer was the easiest to integrate. The messages appear as follows in the Inbox:

From: tamtam@mail.com [mailto:tamtam@mail.com]

Sent: Saturday, October 22, 2005 2:15 PM

To: xxxxxxxxxxxxxxxx

Subject: New Message

Received at 14:14 on 22/10

From: 714-966-8551

Name: Home Depot Inc

They can also be sent to the SMS gateway of a cellular provider. The Name and phone numbers are extracted from the Caller ID frame but the time comes from the Time of the Day clock. This clock is automatically set with any valid Caller ID frame that carries the date and time information so the information will be present even if the Caller ID is ever missed.
The Web server was the other application to be integrated. The work was more involved because the uIP stack relies on a file system that is part of the memory. The stack comes with a PERL script which turns the strings into constants for the C compiler. Because of the availability of a “real”, flash-based file system, the web server was modified to make use of the existing FAT system. The process ended up being more involved than I initially thought. In addition, I discovered that the way web browsers access a web page is quite interesting. For example, when downloading a file, the web browser attempts to download the beginning of the file looking for the "Content-Length: <size>" header. It then aborts the file download to restart it immediately. This process is easily handled with a memory-based file system but had to be handled very carefully with the FAT system. The Content-Length header was added to the original web server and it required the addition of a FAT function to discover the size of a given file.
The result can be seen in Figure 7: Message Web Page. The wave files are automatically downloaded and played if the user clicks on any hyperlink. This is one aspect of TAM-TAM where some work would improve the quality of the prototype. The file streaming process sometimes slower than real time and Windows does not always cache enough data to take this into account. The problem is caused by the fact that the currently opened file is only read when the file system is starving for data instead of keeping the queue full all the time. This is for the most part a problem that would be solved with improved multitasking.
[image: image7.jpg]
Figure 7: Message Web Page
14. The DAA

The key component of an apparatus connected to a telephone line is the Data Access Arrangement or DAA. The DAA used in TAM-TAM was derived from an application note from Midcom, a reputable company that sells the transformers found in such DAA’s. The DAA clearly separates the “hot side” and the “cold side”. To simplify, the host side is the one directly connected to the telephone line and the cold side is the one connected to the user circuitry. On the schematic, a dashed line separates the two. The isolation (1500 V in the US) is achieved with a transformer, a number of optocouplers and an isolated solid state relay.
[image: image8.png]
Figure 8: the DAA (small)

Two optocouplers were added to the design from the Midcom application note. The first one U6 provides current sensing while the Answering machine is active. It is used to detect the short interruption of the line current that occurs when the remote party hangs up the phone. This prevents TAM-TAM from recording silence. The other optocoupler U7 is used to detect that the local phone was taken off hook. This process also stops the answering machine. If the phone is picked up or a remote hang-up is detected before the beginning of the recording, the process is completely skipped.
Another change to the application note is the addition of C14 and R15. These 2 components provide an AC bypass of the solid state switch and the current sense optocoupler. This AC path is needed to allow the DAA to receive the Caller ID information. The Caller ID is sent by the central office while the telephony device is still on hook, so an AC path through the transformer must be created even when there is no current flowing through the DAA. R15 limits the current through the solid state switch. At the time the switch is closed, C14 is charged with the Central Office battery voltage (up to 60 Volts) and this energy, if not properly limited, could immediately destroy the solid state switch.

The detection routine must take into account the fact that the ring detector uses a dual LED optocoupler. Because both waves are rectified, the measured frequency is twice the actual frequency. Finally, the receive gain had to be adjusted. The ADC can accept 3.3V peak to peak so the gain of the receive amplifier was adjusted so that the input signal into the ADC is just below the 3.3V rail when there is – 10dBm at the phone line input. This conservatively insures that there won’t be any clipping at the amplifier or ADC stages while keeping enough dynamic range for the remote signals.
15. Tools

TAM-TAM was developed with the GNU compiler, the Keil environment and “printf” as a debug tool. The downloading of the flash and the printf output require 2 serial ports. A small board was designed to take care of the DB9 connectors and the CMOS((RS232 level translators. This board is powered from the main board so it does not require any additional connections. The board was designed on the same PCB as TAM-TAM (see #17. Where is Mr. Brown?) but does not share any electrical connection with it since it is meant to be cut away from the main PCB.
The GNU compiler together with the uClibc libraries gives good results but the versions released by Keil are relatively old and some bugs, especially in the handling of the printf statements, were detected. This was an issue because printf’s were heavily relied upon for this project. The idea of regenerating libraries from the existing source code available at: http://www.uclibc.org/ was briefly considered but finally the project got into a working mode without having to get involved with this big task.

Another compiler problem came with the IP stack. The stack uses some very long, multi lines “if” statements that the compiler would not correctly evaluate. Additional parentheses and the removal of some line breaks solved this annoying and hard to identify problem.
[image: image9.jpg]
Figure 9: Debug board

16. PCB

Burning the midnight oil too long and too late into the night caused a number of minor problems on the PCB. They are summarized here below:

· The shape of the SD/MMC connector was correctly drawn but the pin numbers are reversed. This is caused by the fact that the data sheet shows a bottom view of the connector. The connector has 9 pins, out of which only 7 are used in this application. Because of this error, 6 connections had to be reversed (the middle pin has the same number whether seen from the bottom or from the top). This was achieved without too much damage to the PCB.
· The schematic for TAM-TAM was designed with a parts catalog in one hand and a keyboard accessing a web browser in the other hand to make sure that the parts would be orderable later. The simple analog switch from Maxim was apparently overlooked. The design uses an SOT23-5 package but the SOIC-8 is the only part that can be ordered from distributors or from Maxim directly. Because this part is not essential, the switch was forced in the ON position with a soldering point.
· Finally, the footprint for the 250V capacitors on the “hot” side of the telephone line most likely came from an unintentional cut and paste. As a result, the footprint is too small for 250V and they were replaced with 50V capacitors that may not last very long…
Despite these small problems the PCB is fully functional. Figure 10 on page 26 shows a picture of the assembled PCB. The flash card was sitting on top of the connector when the picture was taken.

[image: image10.jpg]
Figure 10: PCB with descriptions

17. Where is Mr. Brown?

As it often happens, my own schedule got a little bit delayed during the hardware design phase so after carefully selecting my components from a mail order company, I opted for the 2-day shipping option from Mr. Brown’s company (UPS). To my disappointment, and despite the information from the web-based tracker, there was no delivery on the promised day. On the morning of the 3rd day, I contacted the mail order company. They were concerned that the package had not been scanned on that day and based on their experience; they did not expect a delivery. While I was willing to wait one more day, they immediately shipped a completely new order, overnight. Unexpectedly on the evening of the 3rd day, the brown truck did show up so I had to reject the overnight delivery of the replacement order on the morning of the 4th day! I can only congratulate Digikey for offering such a good service on a $100 order.

I had another issue with the PCB fabrication. I tried to save money by combining the small debug board with the main PCB. A first company rejected my order for violating their rule (no multiple layouts on the same board). The 2nd one accepted the order but charged me an extra $50 fee and on top of that forced me to remove the series of holes that were supposed to facilitate the cutting operation. I felt that the company was getting me twice but I had no other choice than accepting their term since the time was running out.

I generally do not beg for samples from various companies. My motto is: buying is cheaper than begging. Still I got stuck twice on this project and I got some help from 2 big companies:

· Microchip gave me two samples of their new ENC28J60. I had read about this part around May 2005 in Circuit Cellar, but the part was still not available from distribution in July. I questioned Microchip about that and they offered to send me some evaluation samples. That was an offer I could not reject! While the parts were only pre-production quality, they worked exactly as documented. I only detected a very minor issue, for which I found an easy workaround.

· Midcom also sent me 2 samples of their wet DAA transformer. I had used some of the documentation available on their website to design my board but could not find small quantities of the recommended transformer through distribution. The contact on their website was very responsive and I got 2 samples shipped from China over the weekend.

I both cases I was very honest with the application and never promised a design that would yield millions of parts per month. TAM-TAM was my 3rd attempt at trying to enter the LPC213x contest since the 2 previous attempts were cancelled due to the difficulty in sourcing hard to get parts or getting the appropriate documentation for parts that required a complex and proprietary driver.

18. Improvements

Even though every single feature documented here has been fully implemented and tested, it would be presumptuous to consider TAM-TAM a finished product. For example, just making sure that all the error conditions in the file system are correctly handled may create more work than has been put in the project to date. This short list is a list of on-going improvements that may be added to the current prototype in the future:
· Add an AGC loop on the incoming call to insure a constant average recording level.
· Add a password on the web server login page.

· Improve the file system and handle more error conditions.

· Add a DNS query (currently the IP address of the SMTP mail server must be entered)

· Swap the TCP/IP stack for a stack that would be more appropriate for this project

· A different hardware platform could also be used to integrate the wireless bridge inside the box. WiFi cards are also available in the SD/MMC format but it seems impossible for a hobbyist to get access to the secret recipe that enables such a card.

19. Conclusion
At the end of the exercise, I realized that I spent a few weeks of my life working on skills that I did not even know I had! I was never formally trained in industrial design, schematic entry, PCB layout, C programming
, DSP algorithms, TCP/IP internals, File System, Flash cards or user interface but after putting TAM-TAM together, I almost felt like a specialist in all these fields.
The Keil development board was a good starting point for approaching the LPC213x family and despite its limitations, the GNU/GCC compiler is at the right price point for the hobbyist.

Finally, the LPC213x processors from Philips definitely stand out as being an excellent choice among the many ARM-based processors that are available. The key assets of the family are:

· The ability to run out of integrated Flash and RAM without any wait states. This level of integration removes the need for any external memory devices and dramatically simplifies the board design.

· The 60 MIPS budget that allows the developer to focus more time on the development of performing algorithms than on counting cycles in critical sections of code.

· An extremely powerful and easy to use set of peripherals.

· And finally, for someone, like me, who hates polling, the interrupt handler which is certainly one of the best available.
At Home, October 2005
PS: Because I am not a native English speaker (or writer), what I write is sometimes poorly worded or grammatically wrong. I want to thank Guy Grotke for reviewing and correcting my grammar and other language mistakes.

Annex 1: Example of Configuration File

;--

; RingToAnswer Number of rings before going offhook

; Example: 2 rings

RingToAnswer: 2

;--

; MaxUser Total number of users not including not including the

; "catch all" user

MaxUser: 3

;--

; DTMFTimeOut Time in 100ms units to wait for a User prompt

; Example: 4 seconds

DTMFTimeOut: 40

;--

; RecordTimeOut Maximum record time in 1 second units
; Example: 3 minutes

RecordTimeOut: 180

;--

; GreetingFileName Name of wav file played after the machine goes

; offhook

; Example: "This is the Smith family, press 1 for Jim,

; 2 for Julie, 3 for the kids or 0 for a

; general message"

GreetingFileName: hello.wav

;--

; NoUserFileName Name of wav file played if no DTMF is heard

; Example: "Leave your message after the tone"

NoUserFileName: message.wav

;--

; User1FileName Name of wav file played after a DTMF 1 is detected

;

 Example: "Hi, this is Jim, I am currently traveling
; but leave me a message and I will return

; your call promptly"

User1FileName: jim.wav

;--

; User2FileName Name of wav file played after a DTMF 2 is detected

;

 Example: "Hi, this is Julie I might be at work or at

; the gym, please leave me a message"

User2FileName: julie.wav

;--

; User3FileName: Name of wav file played after a DTMF 3 is detected

;

 Example: "Hi, we are the kids, leave us a message"

User3FileName: kids.wav

;--

;User1Notify: Email address to notify User1

User1Notify: jim@yahoo.com

;--

; User2Notify
 Email address to notify user2

User2Notify: 2135551234@celloperator.net

;--

; User3Notify
 Email address to notify user3

;User3Notify: commented out, user 3 does not want notification

;--

; AllNotify Specify where to send the general messages

; Example: send the notification to User 1
AllNotify: 1
;--
Annex 2: FSK initialization

void initFSK(void)

{

 u08 i;

 for (i=0; i<NPERBAUD; i++)

 {

coeffloi[i] = 16383*cos(2*PI*i/NPERBAUD*1200/1200);

coeffloq[i] = 16383*sin(2*PI*i/NPERBAUD*1200/1200);

coeffhii[i] = 16383*cos(2*PI*i/NPERBAUD*2200/1200);

coeffhiq[i] = 16383*sin(2*PI*i/NPERBAUD*2200/1200);

 }

}
[image: image11.png]
Figure 11: Micro Schematic (Part 1)

[image: image12.png]
Figure 12: Micro Schematic (Part 2)

[image: image13.png]
Figure 13: DAA Schematic

[image: image14.png]
Figure 14: Power Schematic

[image: image15.png]
Figure 15: Ethernet Schematic

[image: image16.jpg]
Figure 16: TAM-TAM Block Diagram
[image: image17.jpg]
Figure 17: TAM-TAM Front Panel

[image: image18]
Figure 18: TAM-TAM Back Panel

[image: image19.jpg]
Figure 19: TAM-TAM populated PCB

Table of contents
1The Active Mansion Telephone Answering Machine

11.
Introduction

22.
Functionality

53.
Block Diagram

54.
User Interface

75.
The wave file format

96.
The File System

117.
The very secretive FSK demodulation

148.
Caller ID

149.
DTMF demodulation

1510.
Tone detection

1611.
DSP Programming

2012.
Ethernet and the TCP/IP stack

2113.
The TCP/IP Applications

2314.
The DAA

2515.
Tools

2516.
PCB

2617.
Where is Mr. Brown?

2718.
Improvements

2819.
Conclusion

 Table of annexes

29Annex 1: Example of Configuration File

30Annex 2: FSK initialization

Table of figures

2Figure 1: TAM-TAM with its wireless bridge

4Figure 2: TAM-TAM Answering Machine Flow

13Figure 3: FSK Demodulator Block Diagram

17Figure 4: Response of the 2 FSK filters

19Figure 5: Ping Pong processing

21Figure 6: Ethernet details

23Figure 7: Message Web Page

24Figure 8: the DAA (small)

25Figure 9: Debug board

26Figure 10: PCB with descriptions

30Figure 11: Micro Schematic (Part 1)

31Figure 12: Micro Schematic (Part 2)

32Figure 13: DAA Schematic

32Figure 14: Power Schematic

33Figure 15: Ethernet Schematic

34Figure 16: TAM-TAM Block Diagram

35Figure 17: TAM-TAM Front Panel

35Figure 18: TAM-TAM Back Panel

36Figure 19: TAM-TAM populated PCB

� ftp://ftp.circuitcellar.com/pub/Circuit_Cellar/2005/176/Sham176.zip

� http://www.wj.com/pdf/technotes/FSK_signals_demod.pdf

� http://www.baycom.org/~tom/ham/da95/d_dspmod.pdf

� An amplifier will generally automatically clip at (or close to) the power supply level.

� http://www.sics.se/~adam/uip/

� My formal training was FORTRAN, COBOL and Pascal!

Circuit Cellar - Philips ARM Design Contest 2005
Page 17/38

[image: image20.jpg]